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The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to
simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high
incidences and supersonic Math numbers. The equations are solved by using an implicit,
upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow
assumption is used and the solutions are obtained by forcing the conserved components of
the flowfield vector to be equal at two axial stations located at 0.95 and 1-0. Computational-
examples cover steady and unsteady asymmetric flows around a circular cone and its
control using side strakes. The unsteady asymmetric flow solution around the circular cone
has also been validated using the upwind, flux-vector splitting (FVS) scheme with the
thin-layer NS equations and the upwind FDS with the full NS equations. The results are in
excellent agreement with each other. Unsteady asymmetric flows are also presented for
elliptic- and diamond-section cones, which model asymmetric vortex shedding around
round- and sharp-edged delta wings.

1. INTRODUCTION

AT HIGH ANGLES OF A'I_ACK, flOW separations from the forebodies of missiles and fighter

aircraft may become asymmetric resulting in side forces, yawing moments and rolling

moments which are, in many instances, sufficiently large to trigger missile and aircraft

spin. Experimental studies have shown that it is not necessary for the separation lines

to be asymmetric in order for the separated flow to be asymmetric (Kenner &

Chapman 1977; Peak et al. 1979; Lamont 1980, 1982). These studies have also shown

that unsteady asymmetric flow with vortex shedding may be either random or periodic,
where the latter is similar to the K_irm_in vortex street in two-dimensional flows around

cylinders.

The onset of flow asymmetry occurs when the relative incidence (ratio of angle of

attack to semi-apex angle) of pointed forebodies exceeds certain critical values. At the

critical values of relative incidence, flow asymmetry develops due to natural and/or

forced disturbances. The origin of natural disturbances may be a transient side slip, an

acoustic disturbance, or similar disturbance of short duration. The origin of forced

disturbances is geometric perturbations due to imperfections in the nose geometric

symmetry or similar disturbances of permanent nature. In addition to the relative

incidence as one of the determinable parameters for the onset of flow asymmetry, the

free-stream Math number, Reynolds number and shape of the body cross-sectional

area are' important determinable parameters. Asymmetric flow and vortex shedding
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have also been documented for sharp-edged delta wings at very high relative incidences

(Shanks 1963; Rediniotis et al. 1988).

The mechanisms which lead to steady and unsteady asymmetric vortical flows past

wings and bodies at high angles of attack and zero side slip are not well understood.

The experimental studies of these phenomena by several investigators (e.g. Keener &

Chapman 1977; Lamont 1982; Skow & Peake 1982; Peake & Tobak 1982) propose two

mechanisms for explaining the origin of flow asymmetry. The first mechanism suggests

that the asymmetry occurs due to instability of the velocity profiles in the vicinity of the

enclosing saddle point which exists in the cross-flow planes above the body primary
vortices. The second mechanism suggests that the asymmetry occurs due to asymmetric

transition of the boundary-layer flow at the apex, either in the axial direction or on

both sides of the body in the cross-flow plane.

Very recently, several attempts have been carried out to computationally simulate

asymmetric vortical flows around slender bodies of revolution. In a paper by Marconi

(1988), the Euler equations are used along with a "forced separation model", which is

introduced by Fiddes (1989), to solve for supersonic flow past a circular cone. The

pseudo-time stepping is carried out until the residual error reaches machine zero while

the flow is symmetric. Proceeding with the time stepping, vortex-flow asymmetry is

obtained and stays stable thereafter. It is believed that the asymmetry is triggered by
the machine round-off error, which acts as a disturbance to the saddle point in the

flowfield. This work shows that the first mechanism of asymmetric vortex flow is

basically an inviscid mechanism. In a recent paper by Siclari & Marconi (1989), the full

Navier-Stokes equations are used to solve for supersonic asymmetric flows around a

5°-semi-apex angle cone over a wide range of angles of attack.

Kandil et al. (1990a) used the unsteady, thin-layer Navier-Stokes equations along

with two different implicit schemes to simulate asymmetric vortex flows around cones

with different cross-sectional shapes. The numerical investigation focuses on a

5°-semi-apex angle circular cone and locally conical flow is assumed. The first scheme is

an implicit, upwind, flux-difference splitting, finite-volume scheme and the second one

is an implicit, approximately factored central-difference, finite-volume scheme. Keep-

ing the Mach number and Reynolds number constant at 1.8 and 105, respectively, the

angle of attack is varied from 10 to 30 °. At or = 10 °, a steady symmetric solution is
obtained and the results of the two schemes are in excellent agreement. At or = 20 ° and

irrespective of the type or level of the disturbance, a unique steady asymmetric solution

is obtained and the results of the two schemes are in excellent agreement. Two types of
flow disturbances are used: a random round-off error or a random truncation-error

disturbance, and a controlled transient side-slip disturbance with short duration. For

the controlled transient side-slip disturbance the solution is unique, and for the

uncontrolled random disturbance the solution is also unique with the exception of

having the same asymmetry changing sides on the cone. At or = 30 °, an unsteady

asymmetric solution with vortex shedding is obtained, and the vortex shedding is

perfectly periodic. Next, the angle of attack is kept fixed at 20 ° and the Mach number is

increased from 1.8 to 3.0 with a step of 0.4. The solutions show that the asymmetry

becomes weaker as the Mach number is increased. The flow recovers its symmetry

when the Mach number reaches 3.0. Passive control of the flow asymmetry has also

been tentatively demonstrated by using a fin on the leeward side of the body along the

plane of geometric symmetry.

Experimental research efforts have also been directed to control asymmetric flows

for eliminating or attenuating the asymmetric forces and the resulting moments by

using either passive-control or active-control methods. Passive-control methods include
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the use of a vertical fin on the leeward side along the plane of geometric symmetry

(Stahl 1989), the use of fixed or movable forebody strakes (Skow & Peak 1982; Ng
1989), or the use of a rotatable forebody tip having variable cross-section, from a

circular shape at its base to an elliptic shape at its tip (Moskovitz et al. 1990).

Active-control methods primarily include the use of blowing ports with various blowing

rates and directions on the forebody surface (Ng 1990). Computational simulations

have also been used to study the effectiveness of both passive (Kandil et al. 1990a) and

active control methods (Travella et al. 1990).

In this paper, the unsteady, compressible, laminar, thin-layer, Navier-Stokes

equations are used, along with an implicit, upwind, flux-difference splitting, finite-

volume scheme to solve for steady and unsteady, asymmetric vortex flows around

cones. The steady results include asymmetric flow around a circular cone and its

control using side strakes. The unsteady results include the asymmetric vortex shedding

around circular, elliptic- and diamond-section cones. The unsteady results for the

circular cone are verified by using the FVS with the thin-layer Navier-Stokes equations

and the FDS with the full Navier-Stokes equations.

2. FORMULATION

2.1. GOVERNING EQUATIONS

The three-dimensional compressible viscous flow around the body is governed by the

conservative form of the dimensionless, unsteady, compressible, thin-layer Navier-

Stokes equations. In terms of time-independent body-conformed coordinates _t, _2
and _3, the equations are

where

aE, a(Ev)
B t_-t a e, a e3 = 0, (1)

Q__ 1
-j ---j[p, taut, au2, pu3, pe]'; (2)

E,,, - inviscid flux = ) [a_'_k]'

1

=j[pum. putU,. + ate=p, pu Um + a2 mp, pu Om

+ 0,_"p, (pe + p)U,,,]', m = 1, 2, 3;

(Ev)3 = viscous and heat-conduction flux in _3 direction

= 1 I0, - qk)l'"
j

(3)

(4)

U= = 0k_mUk.

The first element of the three momentum elements of equation (4) is given by

M®# (_a1_3 aulX

(s)

(6)
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where
1_ e3 _Uk

= 3 3, = 3 ,s (7)

The second and third elements of the momentum elements are obtained by replacing
the subscript 1, everywhere in equation (6), with 2 and 3, respectively. The last
element of equation (4) is given by

M..g{ [12 1 a(a2)] _ak_3(u_k,,-qk)-_--_e _OW +rp _-_---_u_u_-t (y-'l)Pr _'_ JJ' (8)

where

W = _n_3Un. (9)

The reference parameters for the dimensionless form of the equations are L, a=, L/a®,

p® and _® for the length, velocity, time, density and molecular viscosity, respectively.
The Reynolds number is defined as Re = p®V®L/I_®, and the pressure, p, is related to

the total energy per unit mass, e, and density, p, by the gas equation

p = (y - 1)p(e - ½u,,un). (10)

The viscosity, l_, is calculated from the Sutherland law

3/2/ 1 + C \
/z = T _---_), C=0-4317, (11)

and the Prandtl number Pr = 0.72.

In equations (1)-(10), the indicial notation is used for convenience. The subscripts k

and n are summation indices, the superscript or subscript s is a summation index and

the superscript or subscript m is a free index. The range of k, n, s and m is 1-3, and

_t =-a/axk. In equations (1)-(11), u_ is the Cartesian velocity component, U,,, the

contravafiant velocity component, r,,, the Cartesian component of the shear stress

tensor, q, the Cartesian component of heat flux vector, a the local speed of sound and
M_ the free-stream Mach number.

2.2. BOUNDARY AND INmAL CONDmONS

Boundary conditions are explicitly implemented. They include inflow-outflow condi-

tions and solid-boundary conditions. At the plane of geometric symmetry, periodic

conditions are used for symmetric or asymmetric applications on the whole computa-

tional domain (fight and left domains). Since we are dealing with supersonic flows, at

the far-field inflow boundaries, free-stream conditions are specified, and the conical

shock is captured as part of the solution. At the far-field outflow boundaries first-order

extrapolation from the interior points is used. On the solid boundary, the no-slip and

no-penetration conditions are enforced, u_ = u2=u3=0, and the normal pressure

gradient is set equal to zero. For the temperature, the adiabatic boundary condition is

enforced on the solid boundary. The initial conditions are set equal to the free-stream

conditions with Ul --- u2 = u3 = 0 on the solid boundary.

For the passive control application using side strakes, solid-boundary conditions are
enforced on both sides of the strake.

3. COMPUTATIONAL SCHEMES

The principal computational scheme used to solve the governing equations is an
implicit, upwind, flux-difference splitting, finite-volume scheme. It employs the
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flux-difference splitting scheme of Roe. The Jacobian matrices of the inviscid

flux-differences are split into left and right flux differences according to the signs of the

eigenvalues of the inviscid Jacobian matrices. The smooth flux iimiters are used to

eliminate oscillations in the shock region. The viscous and heat-flux terms are centrally

differenced. The resulting difference equation is solved using approximate factorization

along the _, _2 and _3 directions, respectively. The scheme is third-order accurate in

space and first-order accurate in time. The computational scheme is coded in the

computer program "CFL3D." Details of the scheme are given by Rumsey & Anderson

(1988).

The second scheme is an implicit, approximately factored, central-difference,
finite-volume scheme. Added second-order and fourth-order dissipation terms are used

in the difference equation on its right-hand side terms, which represent the explicit part

of the scheme. The Jacobian matrices of the implicit operator on the left-hand side of

the difference equation are centrally differenced in space, and implicit second-order

dissipation terms are added for the numerical stability. The left-hand side operator is

approximately factored, and the difference equation is solved in three sweeps along the

_, _2 and _3 directions, respectively. The computational scheme is coded in the

computer program "ICF3D". Details of the scheme are given by Kandil & Chuang

(1989). The ICF3D code is used to verify some cases which are solved by the CFL3D

code. In this paper, the ICF3D code is used to validate the steady asymmetric flow
case.

A third computational scheme is used to validate the unsteady asymmetric vortex

flow around the circular cone at a 30 ° angle of attack. This scheme is the flux-vector

splitting scheme which is based on the van Leer flux-vector splitting scheme (Rumsey

& Anderson 1988). This optional scheme is also coded in the computer program
"CFL3D".

Since the applications in this paper cover locally conical flows only, the three-

dimensional codes are used to solve for locally conical flows at the axial station x_ = 1.

This is achieved by forcing the conserved components of the flowfield vector, t], to be

equal at two planes located at x_ = 0-95 and 1.0. The concept of locally conical flow is

explained in the next section.

4. LOCALLY CONICAL FLOWS

Locally conical solutions of the thin-layer or full Navier-Stokes equations are obtained

using one of two methods. In the first method, the governing equations are

transformed using the conical-coordinate transformation. Invoking the conical flow

condition which requires that the flow variables be independent of the radial distance

(or axial distance, depending on the transformation) from the cone apex, equating the

radial distance (or axial distance) which appears in the transformed equations to a

constant (equals to unity in most of the present locally conical solutions), the resulting

equations are solved on one spherical (or cross-flow) surface. In the second method,

the three-dimensional flow equations are solved on two spherical (or cross-flow)

surfaces which are located in the very near proximity of a constant radial (or axial)
distance.

During the pseudo-time or accurate-time stepping, the flowfield vector is forced to

be equal at the corresponding grid centers on the two surfaces. This method is used in

the present paper to obtain locally conical solutions. The resulting solutions from these

two methods are the same locally conical solutions. These solutions correspond to the

specified radial (or axial) distance and hence they change as the radial (or axial)
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distance is changed. The reason behind that is simply because the transformed

equations, according to the first method, are not self-similar and hence they are not

globally conical. This is shown below by developing the transformed equations of the

first method. Considering the unsteady, compressible, Navier-Stokes equations in the
Cartesian coordinates,

a(E - E.),
aq 4- = O, i = 1-3, (12)
at Oxi

introducing the conical coordinates,

xt x2 )12= x,xi, (13)
171 X3 172 = X3

and using the chain rule, equation (12) is transformed to

1_3aq a - 0 )/3 a (i_ - F-,_)3 + 2(! - 11,) = 0, (14)a-S+ (v-- m2an3

where

m = Vl + ,121+ ,722,

!_2 = E - 172E 3,

|=

= Eo - n21 3,

L= 3.

!_ = E1 - r/1E3,

]_3 = E3 + r/,E1 + Y/2E2,

E3, e--Avl ----- Evl - 1lIEu3,

]F-_v3 _--"E_3 + _iEul + _2E_2,

(15)

The conical flow condition requires that the flow variables be independent of the

coordinate r/3 (radial distance). Invoking this condition in equation (14) by dropping

the derivatives with respect to )73, equation (14) reduces to

73 _q _. 0O-'-t+ v.,, (!_ - l_), + _ (l_, - !_)2 + 2(i - L) = 0. (16)

It is obvious that the unsteady term includes )73. Moreover, the viscous terms

OF_vl/atll, OEv2/atl2 and L, include r/3, and hence equation (19) is not self-similar. The

explicit dependence of the viscous terms on )73 can be shown through one of the
elements of these vectors. For example, we consider

Orll (rxx R 3 at/l OX 3 \ DX ay az / \ oz 0x//J

M=ma [ ((_)_Ul+ Ou, 20u2 r/,Du3 2 _U3) ] (17,Re)/3ar/t /_ - )72 at/1 r/t _r/2 30r/2 3 ar/t t-_)/2_r/2/].

Thus, the unsteady term and viscous terms are scaled by the radial distance )/3 and

equation (16) does not represent a globally conical flow. The best to be done to make

use of this equation is to select a constant value for )/3, and solve the resulting equation

for what we call "locally conical flow". If r/3 is assigned another constant value, the

resulting equation will have another scale for the unsteady term and viscous terms. It is

concluded that equation (16) becomes globally conical if the unsteady term and viscous

terms vanish, and hence only the steady Euler equations are globally conical.
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5.1. STEADY ASYMMETRIC FLOW AROUND A CIRCULAR CONE

A grid of 161 x 81 points in the circumferential and normal directions, respectively is

used. The grid is generated by using a modified Joukowski transformation with a

geometric series for the grid clustering near the solid boundary. The minimum grid

spacing at the solid boundary in the normal direction is 10 -4 (the characteristic length

is the conical station at xz = 1). A 5°-semi-apex angle cone at angle of attack, o_, of 20 °,
free-stream Mach number, M**, of 1.8 and Reynolds number, Re, of 105 is used. The

maximum radius of the computational domain is 21 r, where r is the cone cross-section

radius at the axial station xl = 1.

Figure 1 shows the residual error versus the number of iterations, the surface-

pressure coefficient, the cross-flow velocity and the total-pressure-loss contours for the

CFL3D and ICF3D codes. In the residual error figure, the CFL3D code shows that the

residual error drops ten orders of magnitude, to machine zero, within 2,500 iteration

steps and the solution is still symmetric. Thereafter, the error increases by six-orders of

magnitude and slightly asymmetric solutions are obtained. The flow is symmetric

during the first 5,000 iteration steps. Next, the error drops down by another six orders

of magnitude, to machine zero again, and stays constant, and a stable steady

asymmetric solution is obtained. It should be noted here that when the residual error

first reaches machine zero, the machine-round-off error acts as a random asymmetric

disturbance to the critically symmetric solution. Thereafter, the disturbance grows
spatially, producing the asymmetric solution. The ICF3D code shows that the residual

error drops five orders of magnitude in the first 3,000 iteration steps, increases two

orders of magnitude in the next 2,000 iteration steps, and then drops down by three

orders of magnitude within the next 5,000 iterations. The flow solution goes through a
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Figure 1. Comparison of steady asymmetric flow solutions around a circular cone, ot = 2W, M.= 1.8,
Re = 105.
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symmetric unstable solution and then to the asymmetric stable solution. The pressure
coefficient curves for the two codes are in excellent agreement over the circumferential

angle 0, which is measured from the leeward plane of symmetry. The suction pressure

in the range of 0 = 0-90 ° is lower than that in the range of 0 = 270-360 o. The

cross-flow velocity and total-pressure-loss contours for the two codes are in excellent

agreement. They show the nature of the flow asymmetry and its details.
Since the residual error of the CFL3D code is much smaller than that of the ICF3D

code, the disturbance which triggered the asymmetry in the first code is attributed to

the machine round-off error, while the disturbance which triggered the asymmetry in
the second code is attributed to the truncation error of the scheme. Both disturbances

are random in nature. However, irrespective of the source of disturbance, the final

asymmetric stable solution is unique. Kandil et al. (1990a) have shown that the solution

is still unique if another source of disturbance is applied for the same critical flow
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Figure 2. Effect of minimum grid size on the asymmetric flow solution; tr = 20 °, M_ = 1.8, Re = l0 s.
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conditions; e.g., a 2 ° or 0.5 ° short-duration side-slip disturbance produces the same

flow asymmetry.
In Figure 2, we show the effect of the minimum grid size on the flow asymmetry for

the same flow conditions of the previous case. The figure shows the residual error

versus the number of iterations, the total-pressure-loss contours and the surface-

A_min = 10 -3, 10 -4 and 10 -5 at the cone surface. The historiespressure coefficient for 3
of the residual errors are qualitatively of similar behavior. The total-pressure-loss

contours show unique solutions with the exception of having the asymmetry changing
sides. This is understood due to the random nature of the disturbance--a machine

round-off error. The surface-pressure-coefficient curves also show unique solutions.

With all the numerical experiments given above, it is conclusively proven that the

asymmetric solution is not scheme-, numerics- or disturbance-dependent.

5.2. PASSIVE CONTROL OF ASYMMETRIC FLOW USING SIDE STRAKES

Figure 3 shows the results of passive control of flow asymmetry around the circular

cone of Figure 1 by using side strakes of height equal to 0.3 r. The iteration histories of
the residual error, lift coefficient and side-force coefficient show the attenuation of the

flow asymmetry and the final stable symmetric solution. The surface-pressure-

coefficient curve, the cross-flow velocity and the total-pressure-losses contours show the

final symmetric solution and the symmetric vortices associated with this controlled flow.
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Figure 3, Passive control of asymmetric flow around a circular cone using strakes, _r = 20% M= = 1.8,
Re = 105, h = 0.3r (h and r are local strake height and cone radius, respectively.).
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The side strakes push the primary vortices away from the leeward plane of geometric

symmetry, and hence they prevent communication of the flow disturbance from the

two sides. It should also be noticed that the Cp curves of Figures 1 and 3 show that the

side strakes provide additional lift besides their function of controlling the flow

asymmetry.

5.3. UNSTEADY ASYMMETRIC FLOW AROUND A CIRCULAR CONE

Keeping the Mach number at 1-8 and Reynolds number at 105, the angle of attack is

increased to 30 ° for the flow around the circular cone of Figure 1. Figure 4 shows the

results of this case using the FDS scheme with the thin-layer NS equations,
FVS-scheme with the thin-layer NS equations and the FDS scheme with the full NS

equations. Here, we show the history of the residual error, the lift coefficient and the

total-pressure-loss contours. For the first solution, pseudo-time stepping was used up to

4
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Figure 4. Comparison of unsteady asymmetric flow solutions with vortex shedding around a circular cone;
periodic flow response; 0_ = 30 °, M_ = 1.8, Re = 105, At = 10 -3.
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10,000 iterations and the solution was monitored every 500 iterations. The solution

showed that the asymmetry was changing from the left side to the right side, which

indicated a possibility of unsteady asymmetric vortex shedding. The residual error was

also oscillating. The computations were repeated starting from the 3,500 iteration step

using time-accurate calculations with At = 10 -3. The residual-error and lift-coefficient

curves show the time history of the solution. It is seen that the residual error and the

lift coefficient show a transient response which is followed by a periodic response.

Snapshots of the total-pressure-loss contours are shown at time steps of n = 15,000;

15,200; 15,400 and 15,700. At n = 15,000, the asymmetric flow is seen with an already

shed vortex from the right side. As time progresses, the shed vortex is convected in the

flow and the primary vortex on the left side stretches upwards, while the primary

vortex on the right gets stronger and expands to the left side. At n = 15,700, the

primary vortex from the left side is shed in the flow field. It should be noticed that the

solution at n = 15,700 is exactly a mirror image of that at n = 15,000. The solution

from 15,000-15,700 represents one half the cycle of shedding. The solution from

15,700-16,400 represents the second one half of the cycle (not shown). The periodicity

of the shedding motion is conclusively captured. The period of oscillation is

10 -3 x 1,400 steps = 1-4 which corresponds to a shedding frequency of 4.488.

Figure 4 also shows the results of the FVS scheme with the thin-layer NS equations

for one-half cycle of oscillation. Using the FVS scheme, the flux limiters are turned on

initially and, as can be seen from the logarithmic-residual curve, the solution becomes

symmetric and steady after 5,000 time steps. Next, the flux limiters are turned off, and

the solution shows a transient response up to 12,000 time steps. Thereafter, the

solution becomes periodic with periodic asymmetric vortex shedding. The solution was

monitored every 100 time steps, and we show snapshots of the total-pressure-loss

contours between n = 13,900 and n = 14,600. Although the process of adjusting the
time instants in order to match those of the FDS solution is difficult, it is seen that the

captured snapshots of the FVS solution almost match those of the FDS solution.

Comparing the FVS solutions at n = 13,900 and 14,600, it is seen that they are mirror

images of each other. Hence, periodic flow response has been achieved with a period
of 1,400 x 10 -3 = 1.4; which is exactly the same period of shedding as that of the FDS

solution. This pinpoints the high numerical dissipation effect of the FVS scheme when

the flux limiters are also turned on. The resulting numerical dissipation in the FVS

scheme is large enough to dampen the random disturbances of the flow solution. By

turning off the flux limiters in the FVS scheme, the random disturbances grow,

producing the asymmetric unsteady vortex shedding. This also shows that the FDS

scheme, even with the flux iimiters turned on, is less dissipative than the FVS scheme.

Finally, we show the results of the FDS-scheme with the full NS equations. The

solution conclusively confirms the previous solutions and hence the unsteady solution is

not scheme- or equation-dependent.

Figure 5 shows snapshots of the surface-pressure coefficient using the FDS and FVS

schemes with the thin-layer NS equations. They are in excellent agreement with each

other. The oscillation of the side force is clearly seen in this figure.

5.4. UNSTEADY ASYMMETRIC FLOW AROUND AN ELLIPTIC SECTION CONE, fr----0"8

Figure 6 shows the solution for an elliptic-section cone with fineness ratio of 0-8. The

residual-error curve shows that the solution produces a symmetric flow through the first

5,000 time steps. Afterwards, the solution shows a transient unsteady flow response for

2,500 time steps which is followed by an unsteady, perfectly periodic, vortex-shedding
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Figure 5. Comparison of snapshots of surface-pressure coefficients around a circular cone; cr = 30*,
M** = 1.8, Re = 10 s, At = 10 -3.

solution. The lift-coefficient curve shows the same nature of the solution as that of the

residual-error curve. This case is carried out using time-accurate stepping with
At = 10 -3.

We also show snapshots of the total-pressure-loss contours and surface-pressure

coefficients at the time steps of 12,000, 12,500, 13,000, 13,500, 14,000 and 14,500. The

solutions at n = 12,000 and 14,500 are mirror images of each other which confirm that

the solution is periodic. The period of oscillation is 5,000 x 10 -3 = 5 which corresponds

to a shedding frequency of 1.257. At n = 12,000, the total-pressure-loss contours show

that the right-side vortex is stretched, having two vortices; one at the top and the

second one below it. In addition, a secondary vortex is seen at the surface. The

left-side vortex has expanded to the right with two vortices beneath it. At n = 12,500,
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6. Unsteady asymmetric flow solution with vortex shedding around an elliptic-section cone;

periodic flow response; cr = 25 °, M_ = 1-5, Re = 10 s, f, = 0.8, At = 10 -3.

the top vortex on the right side has been almost shed while the one below it is

expanding. At n = 13,000, the top vortex on the fight side has been shed and

convected with the flow, while the vortex below it is expanding to the left. As time

passes, the vortex on the left side is stretching upwards and the vortex on the right side

is expanding to the left, as seen from the snapshots at 13,000, 13,500 and 14,000. At

n = 14,500, the vortices on the left side and right side become mirror images of those

on the right side and left side, respectively, at n = 12,000. Again, this case conclusively

shows that unsteady vortex-shedding flows are captured.
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5.5. UNSTEADY ASYMMETglC FLOW AROUND AN ELLIPTIC-SECTION CONE, jr, m 0"2
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This ease is presented to show that asymmetric vortex shedding also exists for wing-like

sections. Here, the elliptic-section fineness ratio is reduced to 0.2. To obtain this

impressive flow case, we have to decrease the free-stream Mach number to 1.4,

increase the angle of attack to 34 ° and increase the free-stream Reynolds number to

2 x 106. These adjustments have been made to enhance the critical flow conditions for

flow asymmetry. For the same section fineness ratio, same angle of attack and same

free-stream Mach number and for free-stream Reynolds number range of 105-

1.5 x 106, the flow is either symmetric or steady asymmetric. It is unsteady only when

the Reynolds number is increased to 2 x 106.
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Figure 7. Unsteady asymmetric flow solution with vortex shedding around an elliptic-section cone (a thick

wing); periodic flow response; at = 34 °, M_ = 1.4, Re = 2 x 106, f, = 0-2, At = 2 x l0 -a.
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Figure 7 shows the time-accurate (At = 2 x 10 -3) results of this case which includes

the time-history of residual error, the time-history of the lift coefficient, snap shots of

the total-pressure-loss contours and snapshots of the surface-pressure coefficients. The

snapshots at n = 15,000, 15,100, 15,200, 15,300, 15,400 and 15,500 represent ap-

proximately one-half the cycle of the periodic flow response. The total-pressure-loss
contour at n = 15,000 shows that the left-side vortex is stretched, while the right-side

vortex has expanded, covering a large region of the left side of the flow domain over

the wing. Under the right-side vortex, a strong secondary vortex is formed. At
n = 15,100, the left-side vortex shows two regions of vortical flows; one at the top and

another one below it. Both vortex regions of the left vortex rotate in the same

clockwise direction. At n = 15,200, the top vortex is shed into the flow field, while the

one below it gets stronger and stretches upwards. At n = 15,300 and 15,400, the shed
vortex from the left side is convected in the flow, the left vortex is expanding to the

right and convecting vorticity to the right vortex. The right vortex is getting stronger,

shrinking in thickness and stretching upwards. A secondary vortex is forming under the

left vortex, and the secondary vortex under the right vortex is diminishing, at

n = 15,100, the flow is approximately a mirror image of that at n = 15,500. The number

of time steps for one cycle of periodic response is 1050, which gives a period of

oscillation of 2 x 10 -3 × 1,050--'-- 2.1 corresponding to a frequency of 2-992.

5.6. UNSTEADY ASYMMETRIC FLOW AROUND A DIAMOND-SECTION CONE, f4 = 0"2 (THICK

WING CASE)

Figure 8 shows the results of the time-accurate (At = 5 x 10 -4) results for this case

which include snapshots of the total-pressure-loss contours and snapshots of the

surface-pressure coefficients. The snapshots are given at n = 11,500, 12,000, 12,500,

13,000, 13,500 and 14,000. The number of time steps for one cycle of periodic response

is 4,500, which gives a period of oscillation of 5 x 10 -4 x 4,500 = 2.25 corresponding to

a frequency of 2.793. It should be noted here that the angle of attack is 38 °, which is

higher than that of the elliptic-section cone of Figure 7, where the angle of attack is 34 °
and all the other flow conditions are the same. Comparing the surface pressure curves

of the elliptic-section wing (Figure 7) and the diamond-section wing (Figure 8), we

conclude that the diamond-section wing has less asymmetric strength and higher lift

coefficient than those of the elliptic-section wing.

6. CONCLUDING REMARKS

The unsteady, compressible, thin-layer, Navier-Stokes equations are used along with

several computational schemes to numerically simulate steady and unsteady asym-
metric vortex flows around cones. The concept of the locally conical flow assumption

has been developed and discussed. A steady asymmetric flow solutions has been

presented and verified for a circular cone. Passive control of the flow asymmetry has
been demonstrated for the circular cone by using side strakes. Unsteady, asymmetric

vortex flows with periodic vortex shedding have been presented for cones with a

circular section, an elliptic section of fineness ratio of 0.8, an elliptic section of fineness
ratio of 0-2 and a diamond section of fineness ratio of 0-2. The unsteady asymmetric

flow solution for the circular cone has been verified using two schemes with the

thin-layer and full NS equations. The present study shows that, for the same flow

conditions, circular section cones produce the strongest flow asymmetry while the

diamond section cones produce the weakest flow asymmetry. It is conclusive that

unsteady flow asymmetry with vortex shedding has been captured. It should be noted
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Figure 8. Unsteady asymmetric flow solutionwith vortex shedding around a diamond-section cone (a thick
wing), periodic flow response, a = 38 °, M_ = 1.4, Re = 2 x 106, f, = 0.2, At -- 5 × 10 -4.

that these solutions are based on the locally conical flow assumption and hence they

must not be used for quantitative comparisons with three-dimensional flow results. The

reason behind such a restriction is the length scale involved with the unsteady and

viscous terms of the locally conical NS equations. However, the solutions are

computationally economical for qualitative and parametric studies of asymmetric flows.
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